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Magnet Technologies

• There are three main types of accelerator

magnet technologies

– permanent magnets,

– resistive magnets,

– superconducting magnets.
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Permanent Magnets

• Permanent magnets are cheap, but can only

provide a small and constant field (e.g., ~0.15 T
for strontium ferrite).

• They are well suited for storage ring operated

at low and constant energy level
(see dedicated Technology Course).

Example: 8-GeV, 3.3-km-circumference,
antiproton recycler ring at Fermilab.



Lecture II 6

Resistive Magnets (1/2)

• Resistive magnets can be ramped in current,

thereby enabling synchrotron-type operations.

• The most economical designs are iron-

dominated.

• The upper field limit for iron-dominated

magnets is ~2 T and is due to iron saturation.
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Resistive Magnets (2/2)

• In practice, most resistive accelerator magnet

rings are operated at low fields to limit power
consumption (typically: ~0.15 T).

Example: electron ring accelerator at DESY, which
has a 586.8 m bending radius, and achieves a
maximum energy of 30 GeV with a bending field
of 0.1638 T.
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Superconducting Magnets (1/2)

• As we have seen, in a synchrotron-type

accelerator, the particle energy is related to the
product of the bending radius, χ, by the bending
field strength, B.

• Hence, to operate at high energies, one must
increase either χ or B (or both).



Lecture II 9

Superconducting Magnets (2/2)

• Increasing χ means a longer tunnel, while

increasing B beyond standard values achieved on
resistive magnets means relying on more costly
and more difficult-to-build superconducting
magnets.

• Since the late 70’s, the trade-off between
tunneling costs, magnet production costs, and
accelerator operating costs is in favor of using
superconducting magnets generating the highest
possible fields and field gradients.
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What is Superconductivity?

• Superconductivity is a unique property exhibited

by some materials at low temperatures where the
resistance drops to zero.

• As a result, materials in the superconducting

state can transport current without power
dissipation by the Joule effect.
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Example: YBaCuO

(Courtesy P. Tixador)
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Advantages of
Superconductivity

• Superconductivity offers at least two

advantages for large magnet systems
 – A significant reduction in electrical 

power consumption,
 – The possibility of relying on much
higher overall current densities in the 
magnets coils.
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Drawbacks of
Superconductivity

• There are at least three drawbacks in using

superconducting magnets
 – cooling requirements,

– magnetization effects,
– risks of “quench”.
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Cooling

• To reach the

superconducting state, the
magnets must be cooled
down and maintained at low
temperatures.

• This requires large

cryogenic systems usually
based on liquid helium.

SSC Magnet Test Facility

at FNAL

(now dismantled)
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Magnetization Effects

• Superconductors

generate
magnetization effects
which result in field
distortions and can
degrade
performances.

• The field distortions

of accelerator magnets
must be corrected.

Hysteresis Observed in the Sextupole

Component of a SSC Dipole Magnet
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Quench (1/3)

• It can happen that an

energized magnet, initially in
the superconducting state,
abruptly and irreversibly
switches back to the normal
resistive state.

• This phenomenon is

referred to as a quench.

Quench of a LHC Dipole Magnet

Prototype at CEA/Saclay
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Quench (2/3)

• The occurrence of a quench causes an

instantaneous disruption and requires that the
magnet system be ramped down rapidly to limit
conductor heating and prevent damages.

• Once the quenching magnet is discharged, it
can be cooled down again and restored into the
superconducting state, and the normal operation
resumes.
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Quench (3/3)

• A quench is seldom fatal, but it is always a

serious disturbance.

• All must be done to prevent it from happening

and all cautions must be taken to ensure the
safety of the installation when it does happen.
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On the Use of
Superconducting Magnets

• In spite of these drawbacks, the use of

superconducting magnet technology has been
instrumental in the realization of today’s giant
particle accelerators.

• In return, high energy physics has become one
of the driving forces in the development of
applied superconductivity.
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Tevatron (1/2)

• The first large-scale application of

superconductivity was the Tevatron.

Site: FNAL, near Chicago, IL
Type: proton/antiproton collider
Circumference: 6.3 km
Energy: 900 GeV per beam
Commissioning: 1983
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Tevatron (2/2)

• The Tevatron arc dipole and quadrupole

magnets were developed and built at FNAL.

Type: single aperture
Aperture: 3” (76.2 mm)
Dipole Field: 4 T
Dipole Length: 6.1 m
Total Number: 774
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Aerial View of FNAL

Tevatron Tunnel

Tevatron Ring

Tevatron Ring

Main Injector
and Recycler Ring
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HERA (1/2)

• The second large-scale particle accelerator to

rely massively on superconducting magnets was
HERA (Hadron Elektron Ring Anlage).

Site: DESY, in Hamburg, Germany
Type: electron/proton collider*
Circumference: 6.3 km
Energy: 30 GeV for electron beam 

and 920 GeV for proton beam
Commissioning: 1990

* Only proton ring relies on superconducting magnets.
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HERA (2/2)

• The HERA arc dipole magnets were developed

at DESY while the arc quadrupole magnets were
developed at CEA/Saclay.  Both magnet types
were mass-produced in industry.

Type: single aperture
Aperture: 75 mm
Dipole Field: 5.2 T
Dipole Length: 8.8 m
Total Number: 416
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Aerial View of DESY

HERA Tunnel

Superconducting p-Ring

Normal e-Ring
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SSC (1/3)

• In the mid-80’s, the USA started the

Superconducting Super Collider (SSC) project.

• The last stage of the SSC complex would have

been made up of two identical rings of
superconducting magnets installed on top of
each other.

• The project was canceled in October 1993

after 14.6 miles (~23.5 km) of tunnel were
excavated and a successful magnet R&D
program had been carried out.
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SSC (2/3)

Site: SSCL, near Dallas, TX
Type: proton/proton collider
Circumference: 87 km
Energy: 20 Tev per beam
Commissioning: Cancelled in 1993

NB: the last injector to the SSC main ring, called the
High Energy Booster (HEB), would have relied also on
superconducting magnets operated in a bipolar mode.



Lecture II 30

SSC (3/3)

• The arc dipole magnets of the SSC main ring

were developed by a collaboration between
SSCL, BNL and FNAL, while the arc quadrupole
magnets were developed by a collaboration
between SSCL and LBNL.  Both magnet types
would have been mass-produced in industry.

Type: single aperture
Aperture: 50 mm
Dipole Field: 6.79 T
Dipole Length: 15 m
Total Number: 7944
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Aerial View of N-15
Construction Site Near

Waxahatchie, TX

Bottom View of Main
Shaft to SSC Tunnel
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LHC (1/2)

• In December 1994, CERN has approved the

construction in its existing tunnel of the Large
Hadron Collider (LHC).

Site: CERN, at the Swiss/French
border, near Geneva

Type: proton/proton collider
Circumference: 27 km
Energy: 7 TeV per beam
Commissioning: 2005
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LHC (2/2)

• The LHC arc dipole magnets were developed

by CERN in collaboration with industry, while the
arc quadrupole magnets were developed at
CEA/Saclay.  The industrial production of both
magnet types is underway.

Type: twin aperture
Aperture: 56 mm
Dipole Field: 8.4 T
Dipole Length: 14.2 m
Total Number: 1232
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CERN Aerial View

Artist View of LHC Tunnel
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Magnet Design

• Most dipole and quadrupole magnets built up

to now (Tevatron, HERA, SSC, LHC…) rely on
similar design concepts.

• These concepts were pioneered in the late 70’s

for the Tevatron at Fermilab.

• Improvements in superconductor and magnet

fabrication have led to more than double the
field over the last 20 years.
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Magnetic Design

• Field is produced by saddle-shape coils, which, in their

long straight sections, approximate cosθ or cos2θ
conductor distributions.

Saddle-Shape Coil Assembly

for a Dipole Magnet

Cosθ Conductor Distribution in a
Dipole Coil Assembly Quadrant

(Courtesy R. Gupta)
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Rutherford-Type Cable

• Coils are wound from flat, two-layer Rutherford-type

cables, made up of NbTi multifilamentary composite
strands.

Rutherford-Type Cable

(Courtesy T. Ogitsu)

NbTi Strand for Accelerator

Magnet Application

(Courtesy Alstom/MSA)



Lecture II 39

Mechanical Design

• Coils are restrained

mechanically by means
of laminated collars,
locked together by keys
or tie rods.

Collared-Coil Assembly Section

of LHC Arc Quadrupole Magnet

Developed at CEA/Saclay
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Iron Yoke

• Collared-coil(s) is(are)

surrounded by an iron yoke
providing a return path for
the magnetic flux.

• In some designs, the

yoke contributes to the
mechanical support.

Twin-Aperture, LHC Arc

Quadrupole Magnet Design

Developed at CEA/Saclay
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Magnet Cooling

• Tevatron, HERA, UNK,

SSC and RHIC magnets are
cooled by boiling helium at
1 atmosphere (4.2 K) or
supercritical helium helium
at 3 to 5 atmosphere
(between 4.5 K and 5 K).

• LHC magnets are cooled

by superfluid helium at
1.9 K.

He Phase Diagram

(courtesy P. Lebrun)
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Cryostat

• The magnet cold mass is surrounded by a helium

containment vessel and is mounted inside a cryostat to
reduce heat losses.

SSC Dipole Magnet
Cryostat
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Beam Pipe

• The particle beams are

circulated within a vacuum
chamber inserted into the
magnet coil apertures.

• The vacuum chamber,

usually referred to as
beam pipe, is cooled by
the helium bathing the
magnet coil.

Beam Screen and Beam Pipe

Under Development

for LHC magnets
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Tevatron

• The Tevatron dipole magnets rely on a warm iron yoke

and are operated reliably since 1983 at a field of 4 T.
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HERA

• Starting with HERA, the

iron yoke is included in the
cold mass.

• HERA was commissioned

in 1990 and the dipole
magnets are operated at
5.23 T (12% above original
design field).



Lecture II 47

SSC

• The SSC magnet

R&D program has
allowed significant
improvements in the
performances and
production costs of
NbTi wires.
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LHC

• LHC will rely on twin-aperture magnets operated in

superfluid helium at 1.9 K.
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LHC (Cont.)

• The LHC magnet R&D program shows that the 1.9-K

limit of NbTi cosθ magnets could be between 9 and 10 T.

(Courtesy A. Siemko)
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Perspectives

• The present NbTi-based, Tevatron-originated

accelerator magnet design seems at its limit.

• Hence, to go beyond LHC, one must perform a

technological jump.

• This jump involves necessarily a change in

superconducting material.

• It can involve also a calling into question of the
cosθ design.

� Providing a reasonable funding level, these could
be exciting times for magnet developers.


